If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80r^2-45=0
a = 80; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·80·(-45)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*80}=\frac{-120}{160} =-3/4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*80}=\frac{120}{160} =3/4 $
| -4=-5(y–7)–19 | | X2+2x-8=(x+4)(x-2) | | 2^(2x+2)=16 | | 22x+2=16 | | x+234=417. | | x+3=5. | | 2x28x=0 | | 7x+3=2x+33. | | 2x²8x=0 | | 2^x+2-2^x-2-15=0 | | 3x+12=27. | | x-5=13. | | 3n=8=20 | | -10g+4g-10g=16 | | x+7=11. | | 7k-4k-k+2=12 | | 11n-10n-1=12 | | 5x+33=2x+156. | | 2x+17=41−2x | | 3x+33=156. | | 3x=123. | | 4x^2+12=76 | | 9m-8m+m+4m-4m=14 | | 14u+u-12u-u=16 | | 2u+2u-3u=16 | | u+u-2u+3u=18 | | 1=1/5+z | | 6r-3r=12 | | 12b+16b-6b+-10b-17b=15 | | 13c+3c-3c+4c-11c=13 | | x^2-0.05=2x-1 | | x^2-x-1.05=0 |